242
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of the mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine and 9-Aminoacridine by indenopyridines in the Salmonella typhimurium tester strain 1537 and E. coli

, , , &
Pages 365-369 | Received 29 Apr 2013, Accepted 10 Oct 2013, Published online: 16 Dec 2013
 

Abstract

The goal of the present research was to determine the protective potential of five newly synthesized indenopyridine derivatives against N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) and 9-aminoacridine (9-AA) induced mutagenesis. MNNG sensitive Escherichia coli WP2uvrA and 9-AA sensitive Salmonella typhimurium TA1537 were chosen as the bacterial tester strains. All of the test compounds showed significant antimutagenic activity at various tested concentrations. The inhibition rates ranged from 25.6% (Compound 2 - 1 mM/plate) to 68.2% (Compound 1 - 2.5 mM/plate) for MNNG and from 25.7% (Compound 4 - 1 mM/plate) to 76.1% (Compound 3 - 2.5 mM/plate) for 9-AA genotoxicity. Moreover, the mutagenicity of the test compounds was investigated by using the same strains. None of the test compounds has mutagenic properties on the bacterial strains at the highest concentration of 2.5 mM. Thus, the findings of the present study give valuable clues to develop new strategies for chemical prevention from MNNG and 9-AA genotoxicity by using synthetic indenopyridine derivatives.

Declarartion of interest

This study was supported by YILDIZ TECHNICAL UNIVERSITY with the project number of BAPK 2012-01-02-KAP05.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.