152
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Improved delivery of angiogenesis inhibitors from PLGA:poloxamer blend micro- and nanoparticles

, , , , &
Pages 57-66 | Received 05 Apr 2009, Accepted 06 Apr 2009, Published online: 18 Jan 2010
 

Abstract

Clinical studies have demonstrated the efficacy of new strategies in cancer therapy, such as chemotherapy and radiotherapy, associated to the administration of tumour vascularization inhibitors. A critical limitation for the clinical application of angiogenesis inhibitors relies in their instability in biological environment and high-dose requirements. This work has attempted to overcome this limitation by designing an adequate delivery vehicle consisting of PLGA:poloxamer blend micro- and nanoparticles. The potential of this delivery system was investigated for a new synthetic angiogenesis inhibitor named polyaminoacid JS-2892b. PLGA:poloxamer (ratio 10 : 1) blend microparticles were prepared by the oil-in-oil emulsion technique, while PLGA:poloxamer (ratio 1 : 1) blend nanoparticles were obtained by a modified solvent diffusion technique. The results showed that, by adjusting the formulation conditions, it was possible to efficiently encapsulate the polyaminoacid JS-2892b within PLGA:poloxamer micro- (particle size of 20 µm and encapsulation efficiency higher than 90%) and nanoparticles (particle size of less than 280 nm and encapsulation efficiency of 52%). In addition, the delivery of the polyaminoacid JS-2892b from the particles could be controlled, without altering its stability, for extended periods of time (from a few days to over a month). The release of the encapsulated compound was significantly affected by the particle size and the way the drug is dispersed into the polymeric matrix. Therefore, this study provides information about the formulation conditions and potential of biodegradable particles for the controlled release of polyaminoacid JS-2892b.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.