191
Views
12
CrossRef citations to date
0
Altmetric
Research Article

PEGylated estradiol benzoate liposomes as a potential local vascular delivery system for treatment of restenosis

, , , , &
Pages 83-94 | Received 26 May 2011, Accepted 03 Oct 2011, Published online: 02 Nov 2011
 

Abstract

This study was directed towards the preparation and optimization of PEGylated (PEG, poly(ethylene glycol)) estradiol benzoate (ESB)-loaded liposomes to be used for the treatment of restenosis by local vascular delivery. Various liposomal formulations were prepared by thin film hydration method followed by sonication. Response surface methodology was applied to study the influence of three different independent variables, on the response of entrapment efficiency (%EE). Liposomes were characterized in terms of size, zeta potential, %EE and release profile. Incorporation of ESB was higher in egg phosphatidylcholine (EPC) liposomes, whereas the drug was displaced from liposomes, as the cholesterol (Chol) content of liposome increased. The optimum formulation composed of EPC/dioleyloxy trimethylammonium propane/distearoylphosphatidylethanolamine-PEG2000 with a molar proportion of 8.5:1:0.5 had the highest EE. In vivo studies in the balloon-injured rat carotid arteries revealed the potential of ESB-loaded liposomes as efficient local and controlled drug delivery systems to reduce restenosis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.