148
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Mixture designs in the optimisation of PLGA nanoparticles: influence of organic phase composition on β-aescin encapsulation

, , , &
Pages 115-125 | Received 08 Jun 2011, Accepted 03 Oct 2011, Published online: 02 Nov 2011
 

Abstract

The objective of this study was to enhance the encapsulation of the antileishmanial saponin aescin in poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). We prepared the NPs by the O/W and W/O/W combined emulsification solvent evaporation/salting-out technique and investigated the influence of organic phase composition on the NPs’ size, zeta potential and entrapment efficiency (EE%) using mixture designs. The obtained NPs were monodispersed with Zave<300 nm and exhibited negative zeta potentials. For the single emulsion, the co-solvent concentration was shown to be the primary determinant of drug entrapment. The EE% increased from 14% to 22% by decreasing the amount of DMSO from 80% to 25% (v/v) in the organic polymer solution. For the double emulsion, EE% was 22% on average and independent of the organic phase composition. The double-emulsion technique did not enhance the aescin encapsulation as expected due to its amphiphilic nature. The optimised aescin-loaded NPs meet the requirements for further in vitro activity tests.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.