1,515
Views
132
CrossRef citations to date
0
Altmetric
Research Article

Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB)

Pages 49-54 | Received 10 Apr 2012, Accepted 16 Apr 2012, Published online: 07 Jun 2012
 

Abstract

In 1995 it was reported for the first time that nanoparticles could be used for the delivery of drugs across the blood-brain barrier (BBB) following intravenous injection. In vitro and in vivo experiments show that the underlying mechanism is receptor-mediated endocytosis followed by transcytosis. No opening of the tight junctions was observed. Due to the overcoating of the nanoparticles with polysorbate 80 or poloxamers 188, apolipoproteins A–I and/or E are adsorbed from the blood on to the particle surface after injection. These apolipoproteins mediate the interaction with LDL or scavenger receptors on the BBB followed by the above brain uptake processes. Likewise, covalent attachment of these apolipoproteins or of transferrin, insulin or antibodies against the respective receptors also enables a similar nanoparticle-mediated drug transport across the BBB. From these results it can be concluded that the nanoparticles act as “Trojan Horses” taking advantage of physiological receptor-mediated transport processes across the BBB.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.