311
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Preparation and evaluation of double-walled microparticles prepared with a modified water-in-oil-in-oil-in-water (w1/o/o/w3) method

&
Pages 741-754 | Received 02 Jul 2012, Accepted 11 Mar 2013, Published online: 30 Apr 2013
 

Abstract

In this study, a modified water-in-oil-in-oil-in-water (w1/o/o/w3) method was developed to prepare double-walled microparticles containing ovalbumin (OVA). The microparticles were characterized with respect to their morphology, particle size, encapsulation efficiency, production yield, thermal properties and in vitro drug release. Microscopy observations clearly showed that microparticles have spherical shape and smooth surface. These microparticles were characterized to have double-walled structure, with a cavity in the centre. By using w1/o/o/w3 method, a significant decrease in mean particle size and a significant increase in encapsulation efficiency were obtained. The mean particle size and the encapsulation efficiency of double-walled microparticles were also affected by the changing amount of OVA and mass ratio of polymers. Microparticles prepared with two polymers exhibited a significantly lower initial burst release followed by sustained release compared to microparticles made from poly(d,l-lactide-co-glycolide) 50/50 only. It can be concluded that these microparticles can be a potential delivery system for therapeutic proteins.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.