185
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Cold-set whey protein microgels containing immobilised lipid phases to modulate matrix digestion and release of a water-soluble bioactive

, , &
Pages 184-192 | Received 15 Feb 2013, Accepted 04 Jul 2013, Published online: 13 Aug 2013
 

Abstract

This study investigated the in-vitro digestibility of cold-set whey protein (WP) microgels prepared by two gelation methods (external and internal) containing lipids (0%, 10% or 20% w/w). The incorporation of lipids into these matrices achieved higher entrapment of the bioactive vitamin riboflavin, as well as significant reductions in rates of both the digestion of the protein matrix, and the subsequent diffusion of the water-soluble bioactive. A biexponential model accounted for the contribution of digestion- and diffusion-driven mechanisms in describing the release of riboflavin into enzyme containing simulated gastrointestinal fluids. In particular, for external gelation microgels, as the lipid load within the matrices increased, the contribution of a faster diffusion-driven release was almost completely negated by a slower digestion-assisted release. Lipid loads provided a composite matrix capable of alternating from a burst to a sustained release of bioactive.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.