353
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules

, , , &
Pages 247-254 | Received 03 Apr 2014, Accepted 06 Jan 2015, Published online: 26 May 2015
 

Abstract

Blackberry (Rubus fruticosus) juice possesses compounds with antioxidant activity, which can be protected by different biopolymers used in the microencapsulation. Therefore, the effects of cell wall material including maltodextrin (MD), Arabic gum (GA) and whey protein concentrate (WPC) were evaluated on the physicochemical and antioxidant properties of encapsulated blackberries using a spray-drying technique. Anthocyanin concentration, polymeric colour, total polyphenols, radical scavenging activity of the 1,1-diphenyl-2-picrilhydrazil radical, reducing power and the stability at different storage conditions were evaluated. GA and MD conferred a similar protection to the antioxidant compounds when the microcapsules were stored at low water activities (aw < 0.515) in contrast to at a high moisture content (aw > 0.902), whereas WPC presented a high protection. Therefore, the selection of the best wall material for blackberry juice encapsulation depends of the conditions of storage of the powder.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.