929
Views
52
CrossRef citations to date
0
Altmetric
Review

Review of Alternative Carrier Materials for Ocular Surface Reconstruction

, , , &
Pages 541-552 | Received 27 Jan 2013, Accepted 05 Oct 2013, Published online: 09 Jan 2014
 

Abstract

Severe ocular surface disorders can result in deficiency of limbal stem cells that is potentially associated with chronic inflammation, impaired vision and even blindness. Advanced stem cells deficiency requires reconstruction of the OS with autologous or allogeneic limbal stem cells. To address such deficiency, a limbal tissue biopsy is taken and limbal cells are expanded on a carrier, which then can be used for OS reconstruction. Human amniotic membrane – currently the most common carrier for transplantation of limbal epithelial stem cells – has the downsides of carrying the risk of disease transmission, limited transparency, variable and unstable quality and low mechanical strength. This article reviews the advantages and disadvantages of the established carrier materials for limbal stem cell transplantation, as well as discussing emerging alternatives, including carriers based on collagen, fibrin, siloxane hydrogel contact lenses, poly(ε-caprolactone), gelatin–chitosan, silk fibroin, human anterior lens capsule, keratin, poly(lactide-co-glycolide), polymethacrylate, hydroxyethylmethacrylate and poly(ethylene glycol) for their potential use in the treatment of limbal stem cell deficiency.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.