276
Views
9
CrossRef citations to date
0
Altmetric
Research Article

The location-specific role of proteoglycans in the flexor carpi ulnaris tendon

, , , &
Pages 367-373 | Received 15 May 2013, Accepted 01 Aug 2013, Published online: 10 Oct 2013
 

Abstract

Tendons like the flexor carpi ulnaris (FCU) that contain region-specific distributions of proteoglycans (PGs) as a result of the heterogeneous, multi-axial loads they are subjected to in vivo provide valuable models for understanding structure–function relationships in connective tissues. However, the contributions of specific PGs to FCU tendon mechanical properties are unknown. Therefore, the objective of this study was to determine how the location-dependent, viscoelastic mechanical properties of the FCU tendon are impacted individually by PG-associated glycosaminoglycans (GAGs) and by two small leucine-rich proteoglycans (SLRPs), biglycan and decorin. Full length FCU tendons from biglycan- and decorin-null mice were compared to wild-type (WT) mice to evaluate the effects of specific SLRPs, while chondroitinase ABC digestion of isolated specimens removed from the tendon midsubstance was used to determine how chondroitin/dermatan sulfate (CS/DS) GAGs impact mechanics in mature FCU tendons. A novel combined genetic knockout/digestion technique also was employed to compare SLRP-null and WT tendons in the absence of CS/DS GAGs that may impact properties in the mature state. In all genotypes, mechanical properties in the FCU tendon midsubstance were not affected by GAG digestion. Full-length tendons exhibited complex, multi-axial deformation under tension that may be associated with their in vivo loading environment. Mechanical properties were adversely affected by the absence of biglycan, and a decreased modulus localized in the center of the tendon was measured. These results help elucidate the role that local alterations in PG levels may play in processes that adversely impact tendon functionality including injury and pathology.

Acknowledgements

The authors thank Dr. Joseph Sarver for helpful discussions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.