421
Views
79
CrossRef citations to date
0
Altmetric
Research Article

In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain

, , , , , & show all
Pages 737-746 | Received 18 Jun 2010, Accepted 08 Nov 2010, Published online: 05 Jan 2011
 

Abstract

Context: Solid lipid nanoparticles (SLN) are regarded as interesting drug delivery systems and their preparation techniques have gained a great deal of attention.

Objective: To evaluate the feasibility of preparing idebenone (IDE) loaded SLN from O/W microemulsions by the phase-inversion temperature (PIT) method. Since SLN have been proposed to improve drug delivery to the brain, IDE was chosen as model drug due to its activity in the treatment of neurodegenerative diseases.

Materials and Methods: Cetyl palmitate was used as solid lipid to prepare SLN containing two surfactant/cosurfactant mixtures, isoceteth-20/glyceryl oleate (SLN A) and ceteth-20/glyceryl oleate (SLN B) by the PIT method.

Results and discussion: All the formulations tested showed a mean particle diameter ranging from 30 to 95 nm and a single peak in size distribution. Stability tests showed that SLN B were more stable than SLN A. IDE release was dependent both on the type of primary surfactant used and the amount of loaded drug. IDE-loaded SLN were effective in inhibiting 2,2′-azobis-(2-amidinopropane)dihydrochloride (APPH)-induced lactic dehydrogenase (LDH) release and reactive oxygen species (ROS) production in primary cultures of astrocytes obtained from rat cerebral cortex. It is noteworthy that SLN B2 (containing ceteth-20 as primary surfactant and 0.7% w/w IDE) were able to prevent entirely both the LDH release and ROS production induced by APPH.

Conclusion: The PIT method provided SLN with good technological properties. The tested SLN could be regarded as interesting carriers to overcome the blood brain barrier and increase the efficacy of the loaded drug.

Acknowledgements

The authors thank Dr. Barbara Ruozi for performing TEM analyses.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.