568
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Characterising the surface adhesive behavior of tablet tooling components by atomic force microscopy

, , &
Pages 875-885 | Received 11 May 2010, Accepted 02 Dec 2010, Published online: 20 Jan 2011
 

Abstract

Purpose: The aim of this study is to develop an atomic force microscopy (AFM) based approach to study the adhesive forces between tabletting punches and model formulation ingredients, that can ultimately be used to understand and predict issues such as sticking during tabletting compression.

Methods: Adhesive interactions were studied between single lactose particles and coated tablet punches. The adhesion was measured at varying relative humidities (RHs) and the influence of surface roughness was investigated. Roughness parameters were measured with AFM imaging and a modeling approach used to predict the influence of roughness on adhesion.

Results: Surface roughness was found to play a significant role in the observed lactose-punch adhesion and the variation of this adhesion across the punch surface. Such differences between punches can be correlated to observations from industrial use. Adhesion forces were spatially mapped to indentify “hot spots” of high adhesion. A modeling approach can predict the relative adhesion of different surfaces from roughness data. The adhesion was also significantly affected by RH, for one type of punch causing a greater than 3× increase in adhesion between 30 and 60% RH. Interestingly, different punches showed different RH-adhesion behavior, relating to their hydrophilicity.

Conclusions: The work introduces a new method for screening tablet punch materials and tabletting conditions. Important factors to be considered when evaluating adhesive interactions in tablet compression have been highlighted. Correlations are observed between AFM adhesion results and tabletting behavior during manufacture. This provides a promising basis for a predictive approach toward combating tabletting issues.

Acknowledgements

The authors wish to thank R.B. at I Holland Ltd. for providing the tablet punch samples and for many useful discussions. Andrew Parker at Molecular Profiles Ltd. is thanked for useful discussions during the project. Morgan Alexander and Darren Albutt at the School of Pharmacy, The University of Nottingham are thanked for assistance with contact angle measurements.

Declarations of interest

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.