541
Views
62
CrossRef citations to date
0
Altmetric
Research Article

Suitability of various excipients as carrier and coating materials for liquisolid compacts

, &
Pages 1200-1207 | Received 02 Nov 2010, Accepted 15 Feb 2011, Published online: 31 Mar 2011
 

Abstract

Context: The liquisolid technology is a promising technique for the release enhancement of poorly soluble drugs. With this approach, liquids such as solutions or suspensions of poorly soluble drugs in a non-volatile liquid vehicle are transformed into acceptably flowing and compressible powders. As fast-release liquisolid compacts require a high amount of liquid vehicle, more effective tableting excipients for liquid adsorption are needed to reduce tablet weight.

Objective: The aim of this study was to investigate the suitability of various novel tableting excipients as carrier and coating materials for liquisolid compacts.

Materials and methods: Liquisolid compacts containing the liquid drug tocopherol acetate (TA) as model drug and various excipients were prepared. The effect of liquid drug content on the flowability and tabletability of the liquisolid powder blends as well as the disintegration of the liquisolid compacts was studied. From this data, the maximum liquid adsorption capacity of the respective mixtures of carrier and coating materials could be determined.

Results and discussion: The liquid adsorption capacity depends on the specific surface area of the investigated excipients. Fujicalin® and especially Neusilin® are more effective carrier materials for liquid adsorption than Avicel®, which is often used for liquisolid systems. Moreover, Florite® and Neusilin® turned out to be more suitable as coating materials than the commonly used Aerosil® due to their better tableting properties.

Conclusion: If Neusilin® is used as carrier and coating material instead of Avicel® (carrier material) and Aerosil® (coating material), the TA adsorption capacity is increased by a factor of 7.

Acknowledgements

The authors would like to thank FMC BioPolymer, SEPPIC, Tokuyama, Evonik, and Dr. Loges for the donation of the excipients and TA. The authors are deeply grateful for the support of Fuji Chemical Industry and the inspiring discussions with Dr. Arun Nair.

Declaration of interest

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.