337
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Preparation, characterization, cellular uptake and evaluation in vivo of solid lipid nanoparticles loaded with cucurbitacin B

, , , &
Pages 770-779 | Received 02 Feb 2012, Accepted 29 May 2012, Published online: 16 Jul 2012
 

Abstract

In this work, solid lipid nanoparticles loaded with cucurbitacin B (Cu B-SLNs) were prepared. It was found that the concentration of poloxamer 188 and soybean lecithin had effects on the mean particle size and size distribution. The zeta potentials were around −33 mV. In vitro release studies showed a sustained release after a burst release. Internalization of Cu B into HepG2 cells could be enhanced by the encapsulation of SLN matrix. The IC50 values of Cu B-SLNs were lower than that of Cu B solution. Both free Cu B and Cu B-SLNs had effectively inhibited the tumor growth and displayed a dose-dependent anti-tumor efficacy. Cu B-SLNs at a dose of 0.11 mg/kg produced the greatest anti-tumor effects (53.3%), which was significant higher than Cu B solution (31.5%, p < 0.05). Cu B-SLNs showed a longer MRT in vivo. The AUC of Cu B-SLNs for tumor increased 3.5 –fold when compared to Cu B solution. The targeting efficiency of Cu B-SLNs was 1.94 times higher in liver as compared to that of Cu B solution. These results indicated that Cu-B SLNs could passively target the tumor with EPR effect, improve the therapeutic efficacy of Cu B, and reduce the doses.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.