573
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin

, , , , , & show all
Pages 260-265 | Received 17 Sep 2012, Accepted 04 Dec 2012, Published online: 29 Jan 2013
 

Abstract

Background: (+)-catechin, as the most common catechin isomer, is recognized to be an antioxidant which benefits the skin in many ways. The purpose of the present study was to prepare and evaluate a suitable liposomal delivery systems for (+)-catechin topical application.

Methods: In this study, catechin-loaded conventional liposomal delivery system, deformable conventional liposomal delivery system and deformable liposomes prepared by reverse-phase evaporation (REV) method were compared. The three systems were characterized for liposome particle size, zeta-potential, entrapment efficiency, drug release, permeability across porcine skin and catechin deposition in the skin.

Results: It was revealed that the size of deformable conventional liposomes before freeze-drying and deformable REV liposomes after freeze-drying range from 335.6 ± 71.7 nm to 551.1 ± 53.4 nm, respectively, which were considered to be suitable for skin delivery. The deformable REV liposomes had a higher aqueous volume and thus were able to entrap greater amounts of hydrophilic (+)-catechin (50.0 ± 5.9%) compared to conventional (30.0 ± 3.8%) and deformable conventional liposomes (36.1 ± 4.6%). All liposomal formulations exhibited a prolonged catechin release. Compared to deformable liposomes, the REV deformable liposomes showed a significantly better deposition of (+)-catechin while catechin solution did not permeate into the porcine ear skin.

Conclusion: Among all formulations studied, deformable REV liposomes were considered to be favorable for catechin topical delivery.

Acknowledgements

The authors gratefully thank the following people: Shaise Bissessor, Hannah Lewis, Miao Lin, Qi Zhang and Yiqing Zhu, School of Pharmacy, University of Auckland, for their initial contribution to this study. This study was supported by New Zealand Pharmacy Education Funding (NZPERF).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.