191
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of biodegradable polyester-co-lactone microparticles for protein delivery

, , , , &
Pages 1213-1222 | Received 16 Oct 2012, Accepted 04 Jun 2013, Published online: 15 Jul 2013
 

Abstract

Poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) was previously evaluated for the colloidal delivery of α-chymotrypsin. In this article, the effect of varying polymer molecular weight (MW) and chemistry on particle size and morphology; encapsulation efficiency; in vitro release; and the biological activity of α-chymotrypsin (α-CH) and lysozyme (LS) were investigated. Microparticles were prepared using emulsion solvent evaporation and evaluated by various methods. Altering the MW or monomer ratio of PGA-co-PDL did not significantly affect the encapsulation efficiency and overall poly(1,3-propanediol adipate-co-ω-pentadecalactone) (PPA-co-PDL) demonstrated the highest encapsulation efficiency. In vitro release varied between polymers, and the burst release for α-CH-loaded microparticles was lower when a higher MW PGA-co-PDL or more hydrophobic PPA-co-PDL was used. The results suggest that, although these co-polyesters could be useful for protein delivery, little difference was observed between the different PGA-co-PDL polymers and PPA-co-PDL generally provided a higher encapsulation and slower release of enzyme than the other polymers tested.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.