181
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Self-assembled liquid crystalline nanoparticles as an ophthalmic drug delivery system. Part I: influence of process parameters on their preparation studied by experimental design

, , , &
Pages 109-115 | Received 22 Apr 2013, Accepted 20 Sep 2013, Published online: 05 Nov 2013
 

Abstract

To develop self-assembled liquid crystalline nanoparticles as a drug delivery system for keratoconus treatment, a formulation containing riboflavin a water-soluble drug, two surfactants (poloxamer 407 and mono acyl glycerol – monoolein-) and water was optimized and prepared by emulsification and a homogenization process. A fractional factorial design was applied to estimate the main effects and interaction effects of five parameters on two responses, namely particle size and encapsulation efficiency. The five parameters are the temperature of the two phases, the duration of emulsification, the presence of heating during homogenization, the number of passes and pressure. The most influent parameters are the presence of heating during the homogenization and the pressure that led to the production of nanoparticles with an average size of 145 nm and an average encapsulation efficiency of 46%.

Acknowledgements

The authors also gratefully acknowledge A. Tonetto from PRATIM (Aix-Marseille University) for the SAXS measurements.

Declaration of interest

Horus Pharma Company is acknowledged for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.