261
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Fundamental analysis of recombinant human epidermal growth factor in solution with biophysical methods

, , , &
Pages 300-306 | Received 30 Apr 2013, Accepted 21 Oct 2013, Published online: 07 Feb 2014
 

Abstract

Correlation of thermodynamic and secondary structural stability of proteins at various buffer pHs was investigated using differential scanning calorimetry (DSC), dynamic light scattering (DLS) and attenuated total reflection Fourier-transform infrared spectroscopy (ATR FT-IR). Recombinant human epithelial growth factor (rhEGF) was selected as a model protein at various pHs and in different buffers, including phosphate, histidine, citrate, HEPES and Tris. Particle size and zeta potential of rhEGF at each selected pH of buffer were observed by DLS. Four factors were used to characterize the biophysical stability of rhEGF in solution: temperature at maximum heat flux (Tm), intermolecular β-sheet contents, zeta size and zeta potential. It was possible to predict the apparent isoelectric point (pI) of rhEGF as 4.43 by plotting pH against zeta potential. When the pH of the rhEGF solution increased or decreased from pI, the absolute zeta potential increased indicating a reduced possibility of protein aggregation, since Tm increased and β-sheet contents decreased. The contents of induced intermolecular β-sheet in Tris and HEPES buffers were the lowest. Thermodynamic stability of rhEGF markedly increased when pH is higher than 6.2 in histidine buffer where Tm of first transition was all above 70 °C. Moreover, rhEGF in Tris buffer was more thermodynamically stable than in HEPES with higher zeta potential. Tris buffer at pH 7.2 was concluded to be the most favorable.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article. This work was supported by the Dongguk University Research Fund of 2012.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.