241
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The in vitro and in vivo investigation of inhaled migraine therapies using a novel aerosol delivery system consisting of an air pressurized capsule device (APCD) in combination with a pMDI spacer for endotracheal dosing into beagle dogs

, , , , , , , & show all
Pages 1989-1996 | Received 13 Jun 2014, Accepted 12 Mar 2015, Published online: 19 May 2015
 

Abstract

Context: Aerosol delivery to animals in preclinical settings has historically been very challenging, requiring the use of techniques, such as intratracheal instillation and dry powder insufflation, that are somewhat invasive, inefficient and not representative of clinical inhalation.

Objective: The objective of this work is to develop a system to deliver dry powder to dogs in an efficient and effective manner for the study of new anti-migraine compounds in development.

Materials and methods: The new device uses a metered aliquot of a dry gas to force dry powder drug from a pre-filled HPMC capsule into an AeroChamber® spacer for subsequent inhalation by the animal.

Results: The delivery of two invesigational migraine drugs via the new device was assessed in vitro using abbreviated Andersen cascade impaction and showed the device is capable of generating a reproducible delivered dose of up to ∼68% with more than 50% of the dose in the respirable range. In vivo studies have also been performed showing that this device effectively delivered the migraine drugs to spontaneously breathing dogs using a proprietary validated dog inhalation model.

Discussion: Results confirmed that the air pressurized capsule device (APCD) was effective in delivering the APIs to lungs of the animals. The in vivo data verified the advantages of inhaled delivery over oral delivery for this class of drugs and were used to establish the cardiopulmonary and respiratory side effect liability profile for these compounds.

Conclusions: This work has demonstrated the utility of this device for quick and accurate screening of prospective drug candidates, representing a significant improvement in ease of use and reprodicibility over current delivery methods.

Acknowledgements

The authors would like to thank Dr. Gary Ewing for his advice and support in the conceptualization of this project.

Declaration of interest

The authors report no declaration of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.