Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 5
109
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Varying the Length of Dim Nocturnal Illumination Differentially Affects the Pacemaker Controlling the Locomotor Activity Rhythm of Drosophila Jambulina

, , , &
Pages 390-396 | Received 23 Nov 2010, Accepted 16 Mar 2011, Published online: 01 Jul 2011
 

Abstract

Photic entrainment of animals in the field is basically attributed to their exposure to the dimly lit nights flanked by the dawn and dusk twilight transitions. This implicates the functional significance of the dimly lit nights as that of the twilight transitions. Recently, the authors have demonstrated that the dimly lit night at 0.0006 lux altered the attributes of the circadian rhythm of locomotor activity of Drosophila jambulina. The present study examined whether the durations of such dimly lit nights affect the entrainment and free-running rhythmicity of D. jambulina. Flies were subjected for 10 days to two types of 24-h lighting regimes in which the photophase (L) was at 10 lux for all flies but the scotophase, which varied in duration from 9 to 15 h, was either at 0 lux (D phase) for control flies or 0.0006 lux (the artificial starlight or S phase) for experimental flies. Thereafter, they were transferred to constant darkness (DD) to compare the after-effects of the dimly lit nights on the period (τ) of free-running rhythm in DD with that of the completely dark nights. Control flies were entrained by all LD cycles, but the experimental flies were entrained only by five LS cycles in which the duration of the S phases ranged from 10 to 14 h. The two LS cycles with very short (9 h) and long (15 h) S phases rendered the flies completely arrhythmic. Control flies started activity shortly before lights-on and continued well after lights-off. The experimental flies, however, commenced activity several hours prior to lights-on but ended activity abruptly at lights-off as the result of a negative masking effect of nocturnal illumination. Length of the midday rest was considerably shorter in the control than in the experimental flies in each lighting regime. The active phase in the control flies was predictably shortened; nonetheless, it was invariable in the experimental flies as the nights lengthened. Transfer from lighting regimes to DD initiated robust free-running rhythmicity in all flies including the arrhythmic ones subjected to LS cycles with 9 and 15 h of scotophases. The τ was profoundly affected by the nocturnal irradiance of the prior entraining lighting regime, as it was always shorter in the experimental than in the control flies. Thus, these results indisputably demonstrate the changes in fundamental properties of the circadian pacemaker of D. jambulina were solely attributed to the extremely dim nocturnal irradiance. This strain of D. jambulina is entrained essentially by the dimly lit natural nights, since it is never exposed to the prevailing photic cues such as the twilight transitions or bright photoperiod, owing to the dense vegetation of its habitat. (Author correspondence: [email protected])

ACKNOWLEDGMENTS

The study was supported by the research grants SP/SO/AS-43/2004 and FIST SR/SO/AS-MS01/2009 funded by Department of Science and Technology, New Delhi, to D.S.J.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.