Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 5
77
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hypobaric Impact on Clinical Tolerance and 24-h Patterns in Iron Metabolism Markers and Plasma Proteins in Men

, , &
Pages 434-445 | Received 18 Oct 2010, Accepted 24 Mar 2011, Published online: 01 Jul 2011
 

Abstract

Long-distance flights can cause a number of clinical problems due to mild hypoxia resulting from cabin pressurization. Using a chronobiological approach, the aim of this work was to assess the clinical tolerance and biological impact of daytime exposure to hypobaric hypoxia on markers of iron metabolism and plasma proteins. Fourteen healthy, male volunteers, ages 23 to 39 yrs, spent 8.5 h in a hypobaric chamber (from 07:45 to 16:15 h) simulating an altitude of 8000 ft. This was followed by another 8.5-h session 4 wks later simulating conditions at an altitude of 12,000 ft. Biological variables were assayed every 2 h over two 24-h spans (control and hypoxia spans, respectively) per simulated altitude. Whereas most of the subjects tolerated the 8000 ft exposure well, eight subjects (57%) presented clear clinical signs of hypoxic intolerance at 12,000 ft. The 24-h blood iron profile showed a biphasic pattern at both altitude simulations, with a significant (∼40%) increase during hypoxia, followed by a (∼25%) decrease during the first hours of recovery. The iron circadian rhythm showed a significant phase delay during the hypoxic exposure at 8000 ft vs. reference. Mean 24-h ferritin levels decreased at both altitudes, but mainly during the nighttime after the 12,000 ft exposure in accordance with Cosinor analysis. The transferrin and total plasma proteins 24-h profiles did not show significant change. Moreover, significant differences, mainly in iron, ferritin, and transferrin, were found at 12,000 ft according to the clinical tolerance to hypoxia, and significant correlations were found between the mid-range crossing times, i.e., here half-descent times (d-T50), for ferritin and total plasma proteins and the reported level of clinical discomfort under hypoxia. This study shows that an 8.5-h exposure to mild hypoxia is able to alter very quickly the 24-h pattern of iron and ferritin. These alterations seem to depend, at least in part, on the clinical tolerance to hypoxia and may help explain the interindividual differences observed in the tolerance to hypoxia. (Author correspondence: [email protected])

ACKNOWLEDGMENTS

We thank the study volunteers as well as the staff of the Institut de Médecine Aérospatiale du Service de Santé des Armées and the Laboratoire de Médecine Aérospatiale (Brétigny-sur-Orge, France) who contributed to this work. This work was supported by grants from the Département des Facteurs Humains (Department of Human Factors) of the Délégation Générale à l'Armement (DGA-02 CO 014).

Declaration of Interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.