Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 6
967
Views
45
CrossRef citations to date
0
Altmetric
Research Article

Duration of Sleep Inertia after Napping during Simulated Night Work and in Extended Operations

, , &
Pages 769-779 | Received 01 Jan 2012, Accepted 10 Apr 2012, Published online: 27 Jun 2012
 

Abstract

Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n = 12, mean age = 25.1 yrs; Protocol 2: n = 12, mean age = 23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00 h after ∼20 h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00 h after ∼30 h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15 min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45 min post-awakening for naps of 40 min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15 min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60 min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ∼45 min after waking.

ACKNOWLEDGEMENTS

We gratefully acknowledge the time and commitment of Professor Steven Haslett, Dr. Thomas Balkin, Penny Bilton, Karyn O'Keeffe, Dr. Sarah Jay, Karl Bridges, the research assistants, and all study participants.

Declaration of Interest Section: The authors have no conflicts of interest to declare.

This research was supported by a Marsden Fast Start Award (08-MAU-108), a United States Air Force Office of Scientific Research grant (FA4869-06-1-0041), and Massey University Research Fund grant (03/3016) to Dr. Signal and Lottery Health Research Equipment grant to the Sleep/Wake Research Centre.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.