Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 30, 2013 - Issue 7
755
Views
47
CrossRef citations to date
0
Altmetric
Research Article

Short-wavelength attenuated polychromatic white light during work at night: limited melatonin suppression without substantial decline of alertness

, , , &
Pages 843-854 | Received 21 Nov 2012, Accepted 22 Jan 2013, Published online: 24 May 2013
 

Abstract

Exposure to light at night increases alertness, but light at night (especially short-wavelength light) also disrupts nocturnal physiology. Such disruption is thought to underlie medical problems for which shiftworkers have increased risk. In 33 male subjects we investigated whether short-wavelength attenuated polychromatic white light (<530 nm filtered out) at night preserves dim light melatonin levels and whether it induces similar skin temperature, alertness, and performance levels as under full-spectrum light. All 33 subjects participated in random order during three nights (at least 1 wk apart) either under dim light (3 lux), short-wavelength attenuated polychromatic white light (193 lux), or full-spectrum light (256 lux). Hourly saliva samples for melatonin analysis were collected along with continuous measurements of skin temperature. Subjective sleepiness and activation were assessed via repeated questionnaires and performance was assessed by the accuracy and speed of an addition task. Our results show that short-wavelength attenuated polychromatic white light only marginally (6%) suppressed salivary melatonin. Average distal-to-proximal skin temperature gradient (DPG) and its pattern over time remained similar under short-wavelength attenuated polychromatic white light compared with dim light. Subjects performed equally well on an addition task under short-wavelength attenuated polychromatic white light compared with full-spectrum light. Although subjective ratings of activation were lower under short-wavelength attenuated polychromatic white light compared with full-spectrum light, subjective sleepiness was not increased. Short-wavelength attenuated polychromatic white light at night has some advantages over bright light. It hardly suppresses melatonin concentrations, whereas performance is similar to the bright light condition. Yet, alertness is slightly reduced as compared with bright light, and DPG shows similarity to the dim light condition, which is a physiological sign of reduced alertness. Short-wavelength attenuated polychromatic white light might therefore not be advisable in work settings that require high levels of alertness. (Author correspondence: [email protected])

ACKNOWLEDGMENTS

We thank the subject volunteers for their participation, Luc Schlangen and Peter van der Burgt (Philips Lighting) for providing the lamps and short-wavelength reducing foil used in this study, and Lotte van Nierop. WolterStam, Vincent Hulst and JoopLuider for practical assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.