491
Views
20
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE Stem Cell Transplant

Predictive Performance of a Physiologically Based Pharmacokinetic Model of Busulfan in Children

, , , , &
Pages 731-742 | Received 09 Apr 2014, Accepted 21 May 2014, Published online: 09 Jul 2014
 

Abstract

A physiologically based pharmacokinetic (PBPK) model of the DNA-alkylating agent busulfan was slightly modified and scaled from adults to children in order to predict the systemic busulfan drug exposure in children. Capitalizing on the recent major software release of PK-Sim®, we refined our PBPK model by implementing glutathione S transferase (GST) in 11 organs using the software integrated enzyme expression database. In addition, two irreversible binding processes (i.e., DNA and plasma protein binding) were applied by using Koff and KD values. The model was scaled from adults to children. Simulations were computed and compared to concentration-time data after intravenous (i.v.) busulfan administration to 36 children. Based on the results, an age-dependent enzyme activity and maturation ratio was tailored and evaluated with an external dataset consisting of 23 children. Initial adult to children scaling indicated lower clearance values for children in comparison to adults. Subsequent age-dependent maturation ratio resulted in three different age groups: Activity of busulfan-glutathione conjugate formation was 80%, 61%, and 89% in comparison to adults for children with an age of up to 2 years, > 2–6 years, and > 6–18 years, respectively. Patients of the evaluation dataset were simulated with a mean percentage error (MPE) for all patients of 3.9% with 3/23 children demonstrating a MPE of > ±30%. The PBPK model parameterization sufficiently described the observed concentration-time data of the validation dataset while showing an adequate predictive performance. This PBPK model could be helpful to determine the first dose of busulfan in children.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 636.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.