462
Views
36
CrossRef citations to date
0
Altmetric
Articles

During apoptosis HMGB1 is translocated into apoptotic cell-derived membraneous vesicles

, , , , , & show all
Pages 342-346 | Received 12 Nov 2012, Accepted 12 Nov 2012, Published online: 17 Jan 2013
 

Abstract

High mobility group box protein B1 (HMGB1), a nuclear protein reportedly involved in the structural organisation of DNA, is released from necrotic cells or upon cellular activation. After its release into the extracellular space, HMGB1 serves as a mediator of inflammation. In contrast to necrotic cells, apoptotic ones usually do not release HMGB1. Formation and release of membraneous vesicles is a well-known feature of apoptotic cell death. Only recently, subcellular membrane vesicles, such as those released during apoptotic cell death have been identified as immune regulators and as mediators of cell to cell communication. We and others have previously detected nuclear antigens within apoptosis-released membranous vesicles and HMGB1 together with nuclear antigens has been discussed to be a key player in etiology and pathogenesis of autoimmune diseases. On this background, we analysed whether HMGB1 is included in the membraneous vesicles generated by apoptosing cells. Employing immune blots we observed abundand amounts of HMGB1 in the fraction of the small membraneous particles isolated from cell culture supernatants and conclude that HMGB1 is translocated into vesicles generated during apoptosis.

Declaration of interest : The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.