Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 22, 2010 - Issue 1
291
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Murine pulmonary inflammation model: a comparative study of anesthesia and instillation methods

, , , &
Pages 77-83 | Received 17 Feb 2009, Accepted 28 Mar 2009, Published online: 17 Dec 2009
 

Abstract

Various techniques have been utilized historically to generate acute pulmonary inflammation in the murine system. Crystalline silica exposure results in acute inflammation followed by pulmonary fibrosis. Methods of exposure are varied in their techniques, as well as types of anesthesia. Therefore, the current study sought to compare the effects of two major anesthesia (isoflurane and ketamine) and three routes of instillation, intranasal (IN), intratracheal (IT), and trans-oral (TO), on markers of inflammation. Mice were anesthetized with isoflurane or ketamine and instilled IN with silica or phosphate-buffered saline (PBS). Mice were sacrificed and lavaged after 3 days. To assess inflammation, alveolar cells were assessed by cytospin and lavage fluid was analyzed for inflammatory cytokines and total protein. While all parameters were increased in silica-exposed groups, regardless of anesthesia type, there were significant increases in neutrophils and total protein in mice anesthetized with ketamine, compared to isoflurane. In comparing instillation techniques, mice were anesthetized with isoflurane and instilled IN, IT, or TO with silica. Increases were observed in all parameters, except tumor necrosis factor-α, following IT silica instillation as compared to the IN and TO instillation groups. In addition, fluorescent microsphere uptake by alveolar macrophages supported the notion that all methods of instillation were uniform, but IT had significantly greater dispersion. Taken together, these data show that each method of exposure tested generated significant inflammation among the silica groups, and any differences in parameters or techniques should be taken into consideration when developing an animal model to study pulmonary diseases.

Acknowledgements

This publication was made possible by grants ES-015294 and R25 ES-016247 from NIEHS, and RR-017670 from the NCRR, a component of NIH, and its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NCRR, NIEHS, or NIH. We extend our appreciation to Pam Shaw and the Flow Cytometry Core for assistance in assays and data analysis, and Raymond Hamilton for statistical guidance.

Declaration of interest: The authors report no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.