Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 23, 2011 - Issue 11
442
Views
50
CrossRef citations to date
0
Altmetric
Research Article

Inhaled whole exhaust and its effect on exercise performance and vascular function

, , &
Pages 658-667 | Received 16 Mar 2011, Accepted 06 Jul 2011, Published online: 25 Aug 2011
 

Abstract

Context: Internal combustion engines are a major source of particulate matter (PM) which has been shown to result in vasoconstriction, yet no present study to our knowledge has investigated the effect of exhaust emissions on both exercise performance and the vasculature. Objective: To examine the effect of freshly generated whole exhaust on exercise performance, pulmonary arterial pressure (PP), and flow-mediated vasodilation (FMD) of the brachial artery. Materials and Methods: Sixteen male, collegiate athletes (age: 20.8 ± 1.28 years) were randomly assigned to submaximal exercise for 20 min followed by a 6 min maximal work accumulation exercise test in either high PM (HPM) or low PM (LPM) conditions on two consecutive days. After a 7-day washout period, subjects completed identical exercise trials in the alternate condition. HPM conditions were generated from a 4-cycle gasoline engine. The participants’ PP and FMD were assessed before and after each exercise trial by tricuspid regurgitant velocity and brachial artery imaging, respectively. Results: Total work (LPM: 108.0 ± 14.8 kJ; HPM: 104.9 ± 15.2kJ, p = 0.019) and FMD (LPM: 8.17 ± 6.41%; HPM: 6.59 ± 2.53%; p = 0.034) significantly decreased in HPM while PP was significantly increased (LPM: 16.9 ± 1.13 mmHg; HPM: 17.9 ± 1.70 mmHg; p = 0.004). A significant correlation was identified between the change in exercise performance and the change in FMD (r = 0.494; p = 0.026) after the first HPM trial. Conclusion: Exercise performance declined in HPM conditions in part due to impaired vasodilation in the peripheral vasculature.

Acknowledgements

The authors would like to thank Trent Gaugler, Ph.D. and the staff of the Statistical Consulting Center at Penn State University for their assistance with components of the statistical analysis from this project.

Declaration of interest

The authors report no declarations of interest. This research project was supported through an internal research grant from The University of Scranton ($3000.00) and a Marywood University graduate research grant ($500.00).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.