Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 25, 2013 - Issue 9
461
Views
15
CrossRef citations to date
0
Altmetric
Review Article

The role of genotoxicity in asbestos-induced mesothelioma: an explanation for the differences in carcinogenic potential among fiber types

, , , &
Pages 553-567 | Received 10 Jan 2013, Accepted 17 May 2013, Published online: 02 Aug 2013
 

Abstract

The mechanism(s) underlying asbestos toxicity associated with the pathogenesis of mesothelioma has been a challenge to unravel for more than 60 years. A significant amount of research has focused on the characteristics of different fiber types and their potential to induce mesothelioma. These mechanistic studies of fiber toxicity have proceeded along two lines: those demonstrating biochemical mechanisms by which fibers induce disease and those investigating human susceptibility. Most recent studies focused on in vitro genotoxic effects induced by asbestos as the mechanism responsible for asbestos-induced disease. Although asbestos exerts a genotoxic effect at certain concentrations in vitro, a positive response in these tests does not indicate that the chemical is likely to produce an increased risk of carcinogenesis in exposed human populations. Thus far, findings from studies on the effects of fiber type in mesothelial cells are seriously flawed by a lack of a dose response relationship. The common limitation of these in vitro experiments is the lack of attention paid to the complexities of the human anatomy, biochemistry and physiology, which make the observed effects in these experimental systems difficult to extrapolate to persons in the workplace. Mechanistic differences between carcinogenic and genotoxic processes indicate why tests for genotoxicity do not provide much insight regarding the ability to predict carcinogenic potential in workers exposed to asbestos doses in the post-Occupational Safety and Health Administration era. This review discusses the existing literature on asbestos-induced genotoxicity and explains why these studies may or may not likely help characterize the dose-response curve at low dose.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.