Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 25, 2013 - Issue 10
198
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Simulation of bronchial mucociliary clearance of insoluble particles by computational fluid and particle dynamics methods

&
Pages 593-605 | Received 12 Feb 2013, Accepted 12 Jun 2013, Published online: 13 Aug 2013
 

Abstract

For a correct assessment of health consequences of inhaled aerosols as a function of dose, whether for environmental, occupational or therapeutic agents, knowledge of their deposition distribution in the respiratory tract and subsequent clearance is important. The objective of this study is to model particle clearance at bronchial airway bifurcation level and to analyze the combined effect of deposition and clearance. For this purpose, a numerical model has been implemented. Air and mucus flow fields were computed in a model bronchial airway bifurcation. Inhaled particles with 1 and 10 µm aerodynamic diameters were tracked to determine deposition and clearance patterns. Simulation results revealed the existence of a slow clearance zone around the peak of the airway bifurcation causing delayed clearance of the particles depositing or entering here. Particles clearing up from the deeper airways and crossing the studied bifurcation do not accumulate in this zone, because of their tendency to avoid it. The average residence time of these particles was around 20 min independently of particle size (whether it is 1 or 10 µm). However, as a result of the superposition of deposition and clearance mechanisms, the final spatial distribution of particles deposited primarily in the target bifurcation is size dependent, because deposition is size specific. Although deposition density of particles deposited in the slow clearance area is one-two orders of magnitude higher than the average deposition density, these values are reduced by clearance by the factors of 4–7, depending on the particle size and the surface area of the selected slow clearance zone. In conclusion, although particle deposition is inhomogeneous, clearance can significantly decrease the degree of spatial non-uniformity of the particles. Therefore, for a correct assessment of doses at local levels, it is important to consider both deposition and clearance. Although future research may overwrite some of the model assumptions on the nature of mucus, the authors think that most of the current predictions will hold.

Acknowledgements

The authors would like to thank Balázs G. Madas and Imre Balásházy for the useful professional discussions and their opinions and advices concerning the content of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.