Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 25, 2013 - Issue 14
259
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Comparison of how ambient PMc and PM2.5 influence the inflammatory potential

, &
Pages 766-773 | Received 29 Jul 2013, Accepted 19 Sep 2013, Published online: 04 Dec 2013
 

Abstract

Airborne particulate matter (PM) is one of the six criteria air pollutants currently regulated by the U.S. Environmental Protection Agency (EPA), with existing ambient standards for PM2.5 and PM10. Currently there are no health-based regulations for the size fraction between 2.5 and 10 µm, commonly known as the coarse fraction (PMc). The present study investigates current gaps in knowledge for PMc including exposure toxicity and PM ratios (PMc:PM2.5) in PM10. Throughout the world, all the three PM size fractions have been shown to be associated with adverse impacts. Recent studies have shown that PMc can be more detrimental to susceptible populations when directly compared to PM2.5, and that the PMc fraction in PM10 can account for the majority of the inflammatory response from PM10 exposure. In our studies we utilized a bone marrow-derived mouse macrophage in vitro system to compare the inflammatory potential of PMc, PM2.5 and mixtures of the two. The result was a linear increase in interleukin(IL) -1β with increasing levels of exposure to winter and summer PMc, as compared to PM2.5, which exhibited logarithmic growth. Also, exposure to PM10 as a function of PM2.5 and PMc mass ratios showed that IL-1β and TNF-α levels increased synergistically with a greater burden of PMc. Endotoxin content in the PM did not correlate with these results, suggesting that other activators in PMc are likely responsible for activating the NF-κB pathway and the inflammasome.

Acknowledgements

We would like to thank the Montana Department of Environmental Quality (Mr Hoby Rash and Mr Dave Simonson) and the Missoula City-County Health Department (Mr Ben Schmidt) for supplying Missoula’s ambient PM data, and also Lou Herritt (University of Montana) for imaging assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.