367
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Whole body plethysmography reveals differential ventilatory responses to ozone in rat models of cardiovascular disease

, , , &
Pages 14-25 | Received 09 Apr 2014, Accepted 07 Aug 2014, Published online: 15 Dec 2015
 

Abstract

To elucidate key factors of host susceptibility to air pollution, healthy and cardiovascular (CV)-compromised rats were exposed to air or ozone (O3) at 0.25, 0.5, or 1.0 ppm for 4 h. We hypothesized that rat strains with the least cardiac reserve would be most prone to develop significant health effects. Using flow whole body plethysmography (FWBP), ventilatory responses in healthy 3-month-old male rats [i.e. Wistar–Kyoto (WKY), Wistar (WIS), and Sprague–Dawley (SD) strains] were compared with hypertensive [i.e. spontaneously hypertensive (SH), fawn-hooded-hypertensive (FHH), and SH-stroke-prone (SHSP)] strains and obese [i.e. SH-heart failure-prone (SHHF) and JCR:LA-cp, atherosclerosis-prone (JCR)] strains. SH were slower to acclimate to the FWBP chambers. At 0-h post-air-exposure, SHSP and SHHF exhibited hyperpnea, indicative of cardiopulmonary insufficiency. At 0-h-post-O3, all but one strain showed significant concentration-dependent decreases in minute volume [MV = tidal volume (TV) × breathing frequency]. Comparing air with 1.0 ppm responses, MV declined 20–27% in healthy, 21–42% in hypertensive, and 33% in JCR rats, but was unchanged in SHHF rats. Penh increased significantly in all strains, with disproportionate increases in “responder” WKY and FHH strains. By 20 h, most changes had resolved, although Penh remained elevated in WKY, SH, and SHSP. Based on the effective dose estimates (O3 ppm × h × MV), the most CV-compromised (SHSP and SHHF) strains received significantly greater O3 lung deposition (25% and 40%, respectively). Data support epidemiologic associations that individuals with cardiopulmonary insufficiency are at greater risk for urban pollutant exposure due, in part, to enhanced lung deposition and exacerbation of hypoxia and pathophysiologic processes of heart failure.

Acknowledgements

We are grateful to Drs. Barbara Buckley and Stephen Gavett (US EPA) for their critical review of this manuscript.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency and approved for publication. Approval does neither signify that the contents necessarily reflect the views and the policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.