274
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Myb via TGFβ is required for collagen type 1 production and skin integrity

, , , , &
Pages 102-112 | Received 19 Nov 2014, Accepted 03 Feb 2015, Published online: 25 Mar 2015
 

Abstract

Skin integrity requires an ongoing replacement and repair orchestrated by several cell types. We previously investigated the architecture of the skin of avian myeloblastosis viral oncogene homolog (Myb) knock-out (KO) embryos and wound repair in Myb+/ mice revealing a need for Myb in the skin, attributed to fibroblast-dependent production of collagen type 1. Here, using targeted Myb deletion in keratin-14 (K14) positive cells we reveal further Myb-specific defects in epidermal cell proliferation, thickness and ultrastructural morphology. This was associated with a severe deficit in collagen type 1 production, reminiscent of that observed in patients with ichthyosis vulgaris and Ehlers–Danlos syndrome. Since collagen type 1 is a product of fibroblasts, the collagen defect observed was unexpected and appears to be directed by the loss of Myb with significantly reduced tumor growth factor beta 1 (Tgfβ−1) expression by primary keratinocytes. Our findings support a specific role for Myb in K14+ epithelial cells in the preservation of adult skin integrity and function.

Declaration of interest

The authors have no conflicts of interest to declare. RGR is supported by the NHMRC of Australia by a Fellowship #APP1002117.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,233.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.