208
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Signaling via IRAG is essential for NO/cGMP-dependent inhibition of platelet activation

, &
Pages 217-227 | Received 07 Oct 2010, Accepted 27 Nov 2010, Published online: 18 Jan 2011
 

Abstract

Platelet activation is strongly affected by nitric oxide/cyclic GMP (NO/cGMP) signaling involving cGMP-dependent protein kinase I (cGKI). Previously it was shown that interaction of the cGKI substrate IRAG with InsP3RI is essential for NO/cguanosine monophosphate (GMP)-dependent inhibition of platelet aggregation in vitro and in vivo. However, the role of Inositol-trisphosphate receptor associated cGMP kinase substrate (IRAG) for platelet adhesion or granule secretion was unknown. Here, we analysed the functional role of IRAG for platelet activation. Murine IRAG-deficient platelets displayed enhanced aggregability towards several agonists (collagen, thrombin and TxA2). NO- or cGMP-dependent inhibition of agonist induced ATP- or 5-HT secretion from dense granules, and P-selectin secretion from alpha granules was severely affected in IRAG-deficient platelets. Concomitantly, the effect of NO/cGMP on platelet aggregation was strongly reduced in IRAG-deficient platelets. Furthermore, GPIIb/IIIa-mediated adhesion of platelets to fibrinogen could only weakly be inhibited in IRAG-deficient mice contrary to wild-type (WT) mice. Our results suggest that signaling via IRAG is essential for NO/cGMP-dependent inhibition of platelet activation regarding granule secretion, aggregation and adhesion. This platelet disorder might cause that the bleeding time of IRAG-deficient mice was reduced.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.