162
Views
0
CrossRef citations to date
0
Altmetric
Original

Modifying spiking precision in conductance-based neuronal models

, , , &
Pages 1-26 | Received 13 Nov 2012, Accepted 14 Dec 2012, Published online: 26 Feb 2013
 

Abstract

The temporal precision of a neuron's spiking can be characterized by calculating its “jitter,” defined as the standard deviation of the timing of individual spikes in response to repeated presentations of a stimulus. Sub-millisecond jitters have been measured for neurons in a variety of experimental systems and appear to be functionally important in some instances. We have investigated how modifying a neuron's maximal conductances affects jitter using the leaky integrate-and-fire (LIF) model and an eight-conductance Hodgkin-Huxley type (HH8) model. We observed that jitter can be largely understood in the LIF model in terms of the neuron's filtering properties. In the HH8 model we found the role of individual conductances in determining jitter to be complicated and dependent on the model's spiking properties. Distinct behaviors were observed for populations with slow (<11.5 Hz) and fast (>11.5 Hz) spike rates and appear to be related to differences in a particular channel's activity at times just before spiking occurs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 642.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.