207
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A modular attractor associative memory with patchy connectivity and weight pruning

&
Pages 129-150 | Received 28 Jun 2013, Accepted 22 Oct 2013, Published online: 19 Nov 2013
 

Abstract

An important research topic in neuroscience is the study of mechanisms underlying memory and the estimation of the information capacity of the biological system. In this report we investigate the performance of a modular attractor network with recurrent connections similar to the cortical long-range connections extending in the horizontal direction. We considered a single learning rule, the BCPNN, which implements a kind of Hebbian learning and we trained the network with sparse random patterns. The storage capacity was measured experimentally for networks of size between 500 and 46 K units with a constant activity level, gradually diluting the connectivity. We show that the storage capacity of the modular network with patchy connectivity is comparable with the theoretical values estimated for simple associative memories and furthermore we introduce a new technique to prune the connectivity, which enhances the storage capacity up to the asymptotic value.

Notes

1. According to Treves and Rolls the diluted regime is reached when the ratio between the number of synapses per unit and the total number of unit in the network is in the range 0.1–0.01.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 642.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.