917
Views
120
CrossRef citations to date
0
Altmetric
Gene Expression Response to Ionising Radiation

Gene expression following ionising radiation: Identification of biomarkers for dose estimation and prediction of individual response

, , , , , , , & show all
Pages 115-129 | Received 18 Jun 2010, Accepted 25 Aug 2010, Published online: 10 Nov 2010
 

Abstract

Purpose: To establish a panel of highly radiation responsive genes suitable for biological dosimetry and to explore inter-individual variation in response to ionising radiation exposure.

Materials and methods: Analysis of gene expression in response to radiation was carried out using three independent techniques (Microarray, Multiplex Quantitative Real-Time Polymerase Chain Reaction (MQRT- PCR) and nCounter® Analysis System) in human dividing lymphocytes in culture and peripheral blood leukocytes exposed ex vivo from the same donors.

Results: Variations in transcriptional response to exposure to ionising radiation analysed by microarray allowed the identification of genes which can be measured accurately using MQRT PCR and another technique allowing direct count of mRNA copies. We have identified genes which are consistently up-regulated following exposure to 2 or 4 Gy of X-rays at different time points, for all individuals in blood and cultured lymphocytes. Down-regulated genes including cyclins, centromeric and mitotic checkpoint genes, particularly those associated with chromosome instability and cancer could be detected in dividing lymphocytes only.

Conclusions: The data provide evidence that there are a number of genes which seem suitable for biological dosimetry using peripheral blood, including sestrin 1 (SESN1), growth arrest and DNA damage inducible 45 alpha (GADD45A), cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin G1 (CCNG1), ferredoxin reductase (FDXR), p53 up-regulated mediator of apoptosis (BBC3) and Mdm2 p53 binding protein homolog (MDM2). These biomarkers could potentially be used for triage after large-scale radiological incidents and for monitoring radiation exposure during radiotherapy.

Acknowledgements

We thank Richard Doull (MRC Harwell) for irradiations. This work was supported in part by Cancer Research UK (C181/A6976) and Breakthrough Breast Cancer.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.