262
Views
12
CrossRef citations to date
0
Altmetric
USE OF HGF FOR RADIATION-INDUCED BONE MARROW DAMAGE

Protection against radiation-induced hematopoietic damage in bone marrow by hepatocyte growth factor gene transfer

, , , , , , , , & show all
Pages 36-44 | Received 20 Sep 2012, Accepted 28 Aug 2013, Published online: 23 Sep 2013
 

Abstract

Purpose: To investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor (HGF) gene could prevent radiation-induced hematopoietic damage.

Materials and methods: Thirty C57BL/6 mice were randomized into three groups, in which phosphate buffer saline (PBS), mock adenovirus vector (Ad-null) or adenovirus vector containing HGF (Ad-HGF) were injected into the tail vein of each group, respectively. After 48 hours, the mice received a single irradiation dose of 6.5 Gy 60Co gamma rays. Blood samples were extracted via the tail vein at day 0, 4, 7, 10, 14, 21, 24 and 30 after irradiation, for red blood cell (RBC) and white blood cell (WBC) and cluster of differentiation4 (CD4)/cluster of differentiation8 (CD8) ratio assessment. At weekly intervals following irradiation, serum erythropoietin (EPO), Interleukin-6 (IL-6) and Interferon-gamma (IFN-γ) levels were measured using enzyme-linked immunosorbent assay (ELISA). On post-irradiation day 30, the mice were autopsied and erythroid burst-forming units (BFU-E) were evaluated.

Results: Adenovirus-mediated HGF gene transfer could increase human HGF level in serum and have a significant elevation in RBC and WBC count. Ad-HGF increased EPO and IL-6 levels and prompted BFU-E formation. Ad-HGF decreased radiation- induced micronucleus frequency in the mouse bone marrow (BM). Most evidence of radiation-induced hematopoietic damage was observed morphologically in bone marrow specimen four weeks after irradiation. Ad-HGF protected against radiation-induced BM failure and increased survival. Finally, Ad-HGF increased the thymic index and enhanced immune function in the irradiated C57BL/6 mice.

Conclusions: This is the first report to date that demonstrates the potential of HGF gene transfer to prevent radiation-induced hematopoietic damage.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.