162
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Clemens von Sonntag and the early history of radiation-induced sugar damage in DNA

Pages 446-458 | Received 09 Jan 2014, Accepted 07 Feb 2014, Published online: 03 Apr 2014
 

Abstract

Purpose: This article reviews the early history of ionizing radiation-induced sugar damage in DNA in dedication to Prof. Clemens von Sonntag, who recently passed away. It covers the time between 1968 and 1978, during which most of the work on the ionizing radiation-induced damage to polyalcohols, carbohydrates and the 2ʹ-deoxyribose moiety in DNA was performed. Methodologies using gas chromatography-mass spectrometry (GC-MS) were developed to identify and quantify the radiation-induced products that had previously remained elusive. Products were identified by GC-MS either directly or after reduction of samples with NaBH4 or NaBD4. Incorporation of deuterium atoms by NaBD4-reduction facilitated the identification of aldehyde, keto, carboxyl and deoxy groups in the molecules. Numerous products of a polyalcohol and carbohydrates were identified and quantified. Mechanisms of product formation were proposed. Several products of the 2ʹ-deoxyribose moiety in DNA were identified, indicating that they were released from DNA strand, not bound to it. Alkali labile sites and products still remaining within DNA or bound to DNA as end groups were also elucidated by first reducing irradiated samples with NaBD4 followed by alkali treatment and GC-MS analysis.

Conclusion: The knowledge of the products of the 2ʹ-deoxyribose moiety in DNA led to the first mechanistic understanding of various pathways of hydroxyl radical-induced DNA strand breakage. To this date, some of these mechanisms still remain the most-widely studied mechanisms of DNA damage. Prof. von Sonntag's contributions to the understanding of the radiation chemistry of carbohydrates and DNA helped shape this field of science for years to come.

Declaration of interest

The author reports no conflicts of interest. The author alone is responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.