267
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Radiation-induced cognitive impairment and altered diffusion tensor imaging in a juvenile rat model of cranial radiotherapy

, , , , , , , & show all
Pages 799-806 | Received 28 Feb 2014, Accepted 18 Jun 2014, Published online: 11 Aug 2014
 

Abstract

Purpose: To assess the long-term effects of fractionated whole brain irradiation (fWBI) using diffusion tensor imaging (DTI) and behavior in a pediatric rodent model for the clinical presentation of adult pediatric cancer survivors.

Materials and methods: Five-week-old, male F344xBN rats were randomized to receive 0, 5, or 6.5 Gy fractions biweekly for 3 weeks, resulting in Sham, Irradiated-30 (IR-30) and IR-39 Gy total dose groups. Magnetic Resonance Imaging occurred at 1, 3, 6 and 9 months with behavioral assessment at 10–11 months post-fWBI.

Results: Irradiation reduced brain size (p < 0.001) and body weight (p < 0.001) proportionate to dose. At 1 month post-fWBI and throughout follow-up, diffusion was reduced in IR-30 and IR-39 relative to shams (p < 0.001). IR-30 but not IR-39 rats were impaired relative to Shams on the reversal trial of the Morris Water Maze (p < 0.05), and IR-30 rats preferred a striatum- mediated strategy (p < 0.06).

Conclusions: Hippocampal performance was impaired in IR-30 but not IR-39 animals. While gross size differences exist, white matter integrity is preserved in rats after fWBI at 5 weeks. This significant departure from childhood cancer survivors and single fraction rodent studies where white matter degradation is a prominent feature are discussed.

Acknowledgements

The authors would like to thank Dr Craig Ferris for his collegiality and resource sharing.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

This work was funded by a NIH Grant CA119990 to JBB. Additional personnel support was provided by NIH Grant CA112593 to MER, Department of Radiation Oncology and the Dalton McMichael Fund in Cancer Research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.