1,096
Views
43
CrossRef citations to date
0
Altmetric
Review Article

The cellulolytic system of Thermobifida fusca

&
Pages 236-247 | Received 10 Dec 2012, Accepted 12 Feb 2013, Published online: 28 Mar 2013
 

Abstract

The process of bioethanol production from biomass comprises pretreatments and enzyme-mediated hydrolysis to convert lignocellulose into fermentable sugars. Because of the recalcitrant character of cellulose, the enzymatic hydrolysis is considered the major challenge in this process to be economically competitive. These technical difficulties highlight the need for the discovery of new enzymes to optimize and lower the cost of current technologies. Microorganisms have developed efficient systems for cellulose degradation. Among cellulolytic microbes, Thermobifida fusca possesses great physiological and cellulolytic characteristics (thermostability, high activity and tolerance to a broad pH range) making it an interesting organism to be studied from an applied perspective. In this review we describe the main enzymes/proteins produced by T.fusca (cellulases, xylanases, mannanase, manosidase, CBM33 and CelR), the effect of substrate on T. fusca proteome, enzyme improvement approaches, synergism between enzymes/proteins and artificial cellulosomes.

Acknowledgements

The authors would like to thank Dr. Elliott Baché for his helpful comments on the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 783.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.