91
Views
4
CrossRef citations to date
0
Altmetric
Original Articles: Research

Bone marrow CD34+ cells expanded on human brain endothelial cells reconstitute lethally irradiated baboons in a variable manner

, , , , &
Pages 1121-1127 | Received 19 Nov 2009, Accepted 16 Mar 2010, Published online: 17 May 2010
 

Abstract

Increased cell dose has a positive impact on the therapeutic outcome of bone marrow (BM) hematopoietic stem cell (HSC) transplant. However, methods to successfully expand BM HSCs have yet to be achieved. It has been shown previously that ex vivo expansion of BM cells using porcine microvascular endothelial cells can rescue a baboon from a lethal dose of radiation. However, in a prior study, baboons that received CD34+ cell doses less than 4 × 106 cells/kg body weight failed to achieve hematopoietic reconstitution. In our present study we used human brain endothelial cells (HUBECs) and cytokines to expand BM cells, and examined their ability to provide hematopoietic reconstitution in three lethally irradiated baboons following autologous transplant as a surrogate preclinical model. After ex vivo culture, the grafts represented a 1.8- to 2.1-fold expansion of CD34+ cells, a 3.7- to 13.2-fold increase of colony-forming cells, and a 1.9- to 3.2-fold increase of cobblestone area-forming cells, in comparison to the input cell numbers. Despite transplanting CD34+ cell grafts displaying a comparable degree of expansion, there was an obvious variability in the kinetics of hematopoietic reconstitution. The variation in hematopoietic reconstitution cannot be fully explained by the properties tested in expanded CD34+ cells, and warrant caution against taking into account such attributes as cell dose, expression of adhesion molecules, and migration as a measure of successful expansion of HSCs.

Acknowledgements

We would like to thank Manuel B. Borce for excellent technical assistance. Dr. Jong Jin Jeong is acknowledged for his assistance with the graphics used in the manuscript. We wish to thank Amgen Inc., Thousand Oaks, CA, for providing cytokines.

Declaration of Interest: This work was supported in part by grants from the Large Scale Biology Corporation and American Cancer Society, Illinois Division.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,065.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.