564
Views
37
CrossRef citations to date
0
Altmetric
Research Article

The antiangiogenic efficacy of NGR-modified PEG–DSPE micelles containing paclitaxel (NGR-M-PTX) for the treatment of glioma in rats

, , , , , , , , & show all
Pages 382-390 | Received 04 Apr 2010, Accepted 23 Jun 2010, Published online: 02 Aug 2010
 

Abstract

Aminopeptidase N (APN), recognized by Asn-Gly-Arg (NGR) peptides, is expressed in the pericytes associated with the BBB, and the main objective of this study is to confirm the hypothesis that NGR-modified DSPE–PEG micelles containing paclitaxel (NGR-M-PTX) can bind to and kill brain tumor angiogenic blood vessels and penetrate into the brain tumor interstitial space, resulting in direct cell death. NGR-M-PTX is prepared by a thin-film hydration method. The in vitro targeting characteristics of NGR-modified micelles on BMEC (murine brain microvascular endothelial cells) were investigated. The effect of NGR-M-PTX on BMEC proliferation and the cytotoxicity of NGR-M-PTX in C6 glioma cells were also tested. The antitumor activity NGR-M-PTX was evaluated in C6 glioma tumor–bearing rats in vivo. The particle size of NGR-M-PTX was approximately 54.2 nm. The drug encapsulation efficiency of NGR-M-PTX was 82.11 ± 2.82%. The cellular coumarin-6 level of NGR-M-coumarin-6 in the BMEC was about 2.2-fold higher than that of M-coumarin-6. BMEC proliferation was significantly inhibited by NGR-M-PTX. NGR-M-PTX had a much lower IC50 value than M-PTX and free drug. The growth of C6 glioma tumor was markedly inhibited by NGR-M-PTX compared with Taxol. In conclusion, our results show that antiangiogenic therapy using NGR-M-PTX exhibits potent in vivo antitumor activity in a C6 glioma–bearing animal model.

Acknowledgement

The authors thank Dr. David Jack for correcting language.

Declaration of interest

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 30873170) and the National Basic Research Program of China (973 Program 2007CB935800 and 2009CB930300).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.