1,065
Views
104
CrossRef citations to date
0
Altmetric
Research Article

Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers

, , , &
Pages 837-845 | Received 27 Aug 2010, Accepted 01 May 2011, Published online: 21 Jun 2011
 

Abstract

Paclitaxel is not effective for treatment of brain cancers because it cannot cross the blood–brain barrier (BBB) due to efflux by P-glycoprotein (P-gp). In this work, glutathione-coated poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) of paclitaxel were developed for brain targeting for treatment of brain cancers. P-gp ATPase assay was used to evaluate the NP as potential substrates. The NP showed a particle size suitable for BBB permeation (particle size around 200 nm) and higher cellular uptake of the NP was demonstrated in RG2 cells. The P-gp ATPase assay suggested that the NP were not substrate for P-gp and would not be effluxed by P-gp present in the BBB. The in vitro release profile of the NP exhibited no initial burst release and showed sustained drug release. The proposed coated NP showed significantly higher cytotoxicity in RG2 cells compared with uncoated NP (p ≤ 0.05). Tubulin immunofluorescent study showed higher cell death by the NP due to increased microtubule stabilization. In vivo brain uptake study in mice showed higher brain uptake of the NP containing coumarin-6 compared with solution. The proposed brain-targeted NP delivery of paclitaxel could be an effective treatment for the brain cancers.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.