897
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Calu-3 cell monolayers as a model of bronchial epithelial transport: organic cation interaction studies

, , &
Pages 97-106 | Received 09 Jul 2012, Accepted 13 Sep 2012, Published online: 10 Oct 2012
 

Abstract

Background: To fully exploit organic cation transporters for targeted drug delivery in the lung, the use of a readily available and well-characterized tissue culture model and cheap easily detectable substrates is indispensable.

Objectives: To investigate the suitability of Calu-3 as tissue model for characterizing organic cation permeation across the bronchial cells using a fluorescent dye, 4-(4-(Dimethylamino)styryl)-N-methylpyridinium iodide (4-DI-1-ASP).

Methods: Substrate uptake, inhibition, and transport were performed to establish active transport mechanism. Organic cation transporter expression was determined with quantitative polymerase chain reaction (qPCR), immune-histochemistry, and fluorescent microscopy.

Results: 4-Di-1-ASP uptake in Calu-3 cells was concentration (Km = 2.7 ± 0.3 mM, Vmax = 4.6 ± 2.6 nmol/µg protein/30 min), temperature (uptake at 37°C>>4°C), and pH dependent (higher uptake at pH ≥ 7). L-carnitine, verapamil, and corticosterone significantly inhibited its uptake with IC50 of 28.2, 0.81, and 0.12 mM, respectively. Transport of the dye across the cells was polarized (AP→BL transport was 2.5-fold > BL→AP), saturable (Km = 43.9 ± 3.2) (µM; Vmax =0.0228± nmol/cm2/sec) and reduced 3-fold by metabolic inhibition. The expression pattern of the organic cation transporters (OCT) and carnitine/organic cation transporter (OCTN) isoforms was: OCT1<<OCT3 <OCTN1<OCTN2; OCT2 was not detected.

Conclusions: Based on qPCR, immunohistochemistry, uptake and transport data, the Calu-3 cells can be used as a model for not only studying strategies for optimizing the effect of inhaled organic cations, but also for cross-validating newly-developed respiratory cell lines.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.