279
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Involvement of NADPH oxidase in up-regulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts induced by oxidized LDL and in apolipoprotein E-deficient mice

, &
Pages 1013-1023 | Received 13 Jan 2011, Accepted 05 May 2011, Published online: 09 Jun 2011
 

Abstract

The present study demonstrated that oxidized LDL (oLDL) increased the generation of superoxide and hydrogen peroxide (H2O2), the abundances of NADPH oxidase (NOX)4, NOX2, p22-phox and lectin-like oLDL receptor-1 (LOX-1) in wild-type or heat shock factor-1 (HSF1)-deficient mouse embryo fibroblasts (MEF). LOX-1 antibody inhibited LDL or oLDL-induced expression of NOX components in MEF. Abundance of HSF1 or plasminogen activator inhibitor-1 (PAI-1) was increased by oLDL in wild-type, but not in HSF1-deficient MEF. Diphenyleneiodonium or siRNA for NOX or p22-phox inhibited oLDL-induced increases of HSF1, PAI-1 and H2O2 in MEF. Increased NOX4, NOX2, LOX1, HSF1 and PAI-1 were detected in aortae and hearts of apolipoprotein E-knockout (apoE-KO) mice compared to controls, which were associated with increased serum cholesterol or plasma PAI-1. The results suggest that NOX is required for oLDL-induced HSF1 or PAI-1 expression in MEF, which was supported by the up-regulation of NOX, LOX-1, HSF1 and PAI-1 in apoE-KO mice.

This paper was first published online on Early Online on 8 June 2011.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.