290
Views
54
CrossRef citations to date
0
Altmetric
Research Article

Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in cancer cells

, , , , , , & show all
Pages 1333-1341 | Received 20 Jul 2011, Accepted 10 Sep 2011, Published online: 14 Oct 2011
 

Abstract

Melatonin is an endogenous indolamine, classically known as a light/dark regulator. Besides classical functions, melatonin has also showed to have a wide range of antitumoral effects in numerous cancer experimental models. However, no definite mechanism has been described to explain the whole range of antineoplasic effects. Here we describe a dual effect of melatonin on intracellular redox state in relation to its antiproliferative vs cytotoxic actions in cancer cells. Thus, inhibition of proliferation correlates with a decrease on intracellular reactive oxygen species (ROS) and increase of antioxidant defences (antioxidant enzymes and intracellular gluthation,GSH levels), while induction of cell death correlates with an increase on intracellular ROS and decrease of antioxidant defences. Moreover, cell death can be prevented by other well-known antioxidants or can be increased by hydrogen peroxide. Thus, tumour cell fate will depend on the ability of melatonin to induce either an antioxidant environment—related to the antiproliferative effect or a prooxidant environment related to the cytotoxic effect.

This paper was first published online on Early Online on 11 October 2011.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.