595
Views
26
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Antioxidant and anti-inflammatory effects of exercise: role of redox signaling

&
Pages 3-11 | Received 26 Jul 2013, Accepted 09 Sep 2013, Published online: 14 Oct 2013
 

Abstract

Contraction-induced production of reactive oxygen species (ROS) has been implicated in oxidative stress to skeletal muscle for the past few decades. As research advances more evidence has revealed a more complete role of ROS under both physiological and pathological conditions. The current review postulated that moderate intensity of physical exercise has antioxidant and anti-inflammatory effects due to the operation and cross-talks of several redox-sensitive signal transduction pathways. The functional roles and mechanisms of action of the nuclear factor κB, mitogen-activated protein kinase, and peroxisome proliferator-activated receptor γ co-activator 1α are highlighted.

Acknowledgments

The authors wish to thank the Wisconsin Alumni Research Foundation (WARF), University of Minnesota Twin Cities, the Natural Science Foundation of China, and Tianjin Municipal Sci-tech-innovation Base Project for financial support.

Declaration of interest

The authors report no declarations of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable
 

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.