948
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Curcumin-mediated oxidative stress resistance in Caenorhabditis elegans is modulated by age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1

, &
Pages 371-379 | Received 29 Aug 2013, Accepted 03 Dec 2013, Published online: 07 Jan 2014
 

Abstract

Curcumin (diferuloylmethane), a pharmacologically active substance derived from turmeric, exhibits anti-inflammatory, anticarcinogenic, and antioxidant properties. We examined the modulation of oxidative-stress resistance and associated regulatory mechanisms by curcumin in a Caenorhabditis elegans model. Our results showed that curcumin-treated wild-type C. elegans exhibited increased survival during juglone-induced oxidative stress compared with the control treatment. In addition, curcumin reduced the levels of intracellular reactive oxygen species in C. elegans. Moreover, curcumin induced the expression of the gst-4 and hsp-16.2 stress response genes. Lastly, our findings from the mechanistic study in this investigation suggest that the antioxidative effect of curcumin is mediated via regulation of age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1. Our study elucidates the diverse modes of action and signaling pathways that underlie the antioxidant activity exhibited by curcumin in vivo.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.