207
Views
25
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Kidney fibrosis is independent of the amount of ascorbic acid in mice with unilateral ureteral obstruction

, , , , , , , , , & show all
Pages 1115-1124 | Published online: 21 Jul 2014
 

Abstract

In response to sustained damage to a kidney, fibrosis that can be characterized as the deposition of a collagenous matrix occurs and consequently causes chronic kidney failure. Because most animals used in experiments synthesize ascorbic acid (AsA) from glucose, the roles of AsA in fibrotic kidney diseases are largely unknown. Unilateral ureteric obstruction (UUO) mimics the complex pathophysiology of chronic obstructive nephropathy and is an ideal model for the investigation of the roles of AsA in kidney failure. We examined the impact of a deficiency of Akr1a, a gene that encodes aldehyde reductase and is responsible for the production of AsA, on fibrotic damage caused by UUO in mice. Oxidatively modified DNA was elevated in wild-type and Akr1a-deficient kidneys as a result of UUO to a similar extent, and was only slightly suppressed by the administration of AsA. Even though Akrla-deficient mice could produce only about 10% of the AsA produced by wild-type mice, no difference was observed in collagen I synthesis under pathological conditions. The data implied either a low demand for AsA or the presence of another electron donor for collagen I production in the mouse kidney. Next, we attempted to elucidate the potential causes for oxidative damage in kidney cells during the fibrotic change. We found decreases in mitochondrial proteins, particularly in electron transport complexes, at the initial stage of the kidney fibrosis. The data imply that a dysfunction of the mitochondria leads to an elevation of ROS, which results in kidney fibrosis by stimulating cellular transformation to myofibroblasts.

Declaration of interest

The authors report no declarations of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.