812
Views
67
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Inflammation-induced ROS generation causes pancreatic cell death through modulation of Nrf2/NF-κB and SAPK/JNK pathway

, , , &
Pages 1371-1383 | Received 18 Feb 2015, Accepted 16 Jul 2015, Published online: 02 Sep 2015
 

Abstract

Chronic pancreatitis is characterized by progressive loss of exocrine and endocrine functions of the pancreas and is considered to be the single most important cause for development of pancreatic cancer. Recent evidence suggests that inflammation and oxidative stress play pivotal roles in the development of clinical conditions like pancreatitis, type 2 diabetes mellitus, and metabolic syndrome. Nonetheless, molecular signaling pathways linking inflammation, oxidative stress, and pancreatic cell death are not yet well defined. In this study, bacterial lipopolysaccharide (LPS) was used (injected twice a week for three weeks) to emulate a chronic systemic inflammatory state in experimental Swiss albino mice. Using this model, we traced the genesis of inflammation-induced pancreatic dysfunction and mapped the signaling events which contribute to the induction of this state. Histopathological studies revealed the appearance of cell injuries and increased collagen content in LPS-exposed group, indicative of fibrosis. Assays for intraperitoneal glucose tolerance, insulin levels, and insulin receptor mRNA expression signified inflammation-induced insulin insensitivity. For the first time we present evidence that cellular inflammation and subsequent oxidative stress modulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/NF-E2-related factor 2 or Nuclear factor (erythroid-derived 2)-like 2 pathway and initiates pancreatic cell death by activation of stress-responsive Rho/stress-activated protein kinase or SAPK/Jun-N-terminal kinase (JNK) pathway. Scavenging of intracellular reactive oxygen species (ROS) by a standard antioxidant N-acetyl cysteine led to pancreatic cell survival. The data obtained strongly indicates that the LPS/toll-like receptor-4 or TLR-4/ROS/NF-κB pathway is critically involved in the initiation of inflammation, oxidative stress, and pancreatic cell death and might prove to be an excellent choice as a target for novel therapeutic strategies in the management of metabolic disorders.

Acknowledgement

The authors acknowledge the Department of Biotechnology, Govt. of West Bengal; DST-PURSE; DST-INSPIRE and Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, for fellowship and grant support. The authors would like to acknowledge the central instrument facility of CRNN, CU.

Declaration of interest

The authors declare that no conflict of interest exists. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.